Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.121
Filtrar
1.
Biomolecules ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540731

RESUMO

A Type I reaction center (RC) (Fe-S type, ferredoxin reducing) is found in several phyla containing anoxygenic phototrophic bacteria. These include the heliobacteria (HB), the green sulfur bacteria (GSB), and the chloracidobacteria (CB), for which high-resolution homodimeric RC-photosystem (PS) structures have recently appeared. The 2.2-Å X-ray structure of the RC-PS of Heliomicrobium modesticaldum revealed that the core PshA apoprotein (PshA-1 and PshA-2 homodimeric pair) exhibits a structurally conserved PSI arrangement comprising five C-terminal transmembrane α-helices (TMHs) forming the RC domain and six N-terminal TMHs coordinating the light-harvesting (LH) pigments. The Hmi. modesticaldum structure lacked quinone molecules, indicating that electrons were transferred directly from the A0 (81-OH-chlorophyll (Chl) a) acceptor to the FX [4Fe-4S] component, serving as the terminal RC acceptor. A pair of additional TMHs designated as Psh X were also found that function as a low-energy antenna. The 2.5-Å resolution cryo-electron microscopy (cryo-EM) structure for the RC-PS of the green sulfur bacterium Chlorobaculum tepidum included a pair of Fenna-Matthews-Olson protein (FMO) antennae, which transfer excitations from the chlorosomes to the RC-PS (PscA-1 and PscA-2) core. A pair of cytochromes cZ (PscC) molecules was also revealed, acting as electron donors to the RC bacteriochlorophyll (BChl) a' special pair, as well as PscB, housing the [4Fe-4S] cluster FA and FB, and the associated PscD protein. While the FMO components were missing from the 2.6-Å cryo-EM structure of the Zn- (BChl) a' special pair containing RC-PS of Chloracidobacterium thermophilum, a unique architecture was revealed that besides the (PscA)2 core, consisted of seven additional subunits including PscZ in place of PscD, the PscX and PscY cytochrome c serial electron donors and four low mol. wt. subunits of unknown function. Overall, these diverse structures have revealed that (i) the HB RC-PS is the simplest light-energy transducing complex yet isolated and represents the closest known homolog to a common homodimeric RC-PS ancestor; (ii) the symmetrically localized Ca2+-binding sites found in each of the Type I homodimeric RC-PS structures likely gave rise to the analogously positioned Mn4CaO5 cluster of the PSII RC and the TyrZ RC donor site; (iii) a close relationship between the GSB RC-PS and the PSII Chl proteins (CP)43 and CP47 was demonstrated by their strongly conserved LH-(B)Chl localizations; (iv) LH-BChls of the GSB-RC-PS are also localized in the conserved RC-associated positions of the PSII ChlZ-D1 and ChlZ-D2 sites; (v) glycosylated carotenoids of the GSB RC-PS are located in the homologous carotenoid-containing positions of PSII, reflecting an O2-tolerance mechanism capable of sustaining early stages in the evolution of oxygenic photosynthesis. In addition to the close relationships found between the homodimeric RC-PS and PSII, duplication of the gene encoding the ancestral Type I RC apoprotein, followed by genetic divergence, may well account for the appearance of the heterodimeric Type I and Type II RCs of the extant oxygenic phototrophs. Accordingly, the long-held view that PSII arose from the anoxygenic Type II RC is now found to be contrary to the new evidence provided by Type I RC-PS homodimer structures, indicating that the evolutionary origins of anoxygenic Type II RCs, along with their distinct antenna rings are likely to have been preceded by the events that gave rise to their oxygenic counterparts.


Assuntos
Chlorobi , Complexo de Proteínas do Centro de Reação Fotossintética , Chlorobi/química , Chlorobi/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Microscopia Crioeletrônica , Bactérias/metabolismo , Apoproteínas/metabolismo , Proteínas de Bactérias/metabolismo
2.
Nature ; 621(7977): 154-161, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37494956

RESUMO

Although eukaryotic and long prokaryotic Argonaute proteins (pAgos) cleave nucleic acids, some short pAgos lack nuclease activity and hydrolyse NAD(P)+ to induce bacterial cell death1. Here we present a hierarchical activation pathway for SPARTA, a short pAgo consisting of an Argonaute (Ago) protein and TIR-APAZ, an associated protein2. SPARTA progresses through distinct oligomeric forms, including a monomeric apo state, a monomeric RNA-DNA-bound state, two dimeric RNA-DNA-bound states and a tetrameric RNA-DNA-bound active state. These snapshots together identify oligomerization as a mechanistic principle of SPARTA activation. The RNA-DNA-binding channel of apo inactive SPARTA is occupied by an auto-inhibitory motif in TIR-APAZ. After the binding of RNA-DNA, SPARTA transitions from a monomer to a symmetric dimer and then an asymmetric dimer, in which two TIR domains interact through charge and shape complementarity. Next, two dimers assemble into a tetramer with a central TIR cluster responsible for hydrolysing NAD(P)+. In addition, we observe unique features of interactions between SPARTA and RNA-DNA, including competition between the DNA 3' end and the auto-inhibitory motif, interactions between the RNA G2 nucleotide and Ago, and splaying of the RNA-DNA duplex by two loops exclusive to short pAgos. Together, our findings provide a mechanistic basis for the activation of short pAgos, a large section of the Ago superfamily.


Assuntos
Proteínas Argonautas , Células Procarióticas , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/classificação , Proteínas Argonautas/metabolismo , DNA/metabolismo , Ativação Enzimática , NAD/metabolismo , Células Procarióticas/metabolismo , RNA/metabolismo
3.
Acta Oncol ; 62(6): 550-559, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37352133

RESUMO

BACKGROUND: We aimed to evaluate the correlation of apoprotein E (APOE) transcription and its methylation with immune microenvironment in HCC patients. MATERIAL AND METHODS: The expression profiles of APOE transcription, APOE methylation, and APOE protein were investigated via comprehensive bioinformatic analyses. After that, the association between the immune activation of HCC and APOE transcription and methylation were analyzed. Finally, the prognostic role and immune correlation of the APOE protein in 92 HCC individuals was determined. RESULTS: Based on data from TCGA, GEO, and ICGC datasets, the APOE mRNA was differentially expressed in HCC tissues compared with normal liver tissues. Further, APOE methylation was down-regulated in HCC tissues compared to normal liver tissues. APOE methylation was negatively correlated with APOE transcription in HCC (r=-0.52, p < 0.0001). Based on APOE methylation, the HCC patients were stratified into hypermethylation and hypomethylation subgroups as they exhibited different immune activation statuses. Further, HCC individuals with APOE hypermethylation had a closer immune correlation than those with hypomethylation. Notably, APOE transcription was associated with weak immune infiltrates and activation. Finally, over-expression of the APOE protein was correlated with better survival outcomes, but not correlated with PD-1 or CTLA4 protein in HCC revealed by immunohistochemistry. CONCLUSION: APOE methylation had a closer correlation with immune cells than APOE mRNA, indicating that APOE methylation might play an important role in immune regulation in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apolipoproteínas E/genética , Apoproteínas/genética , Apoproteínas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Metilação de DNA , Neoplasias Hepáticas/patologia , Prognóstico , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Microambiente Tumoral
4.
J Exp Bot ; 74(11): 3328-3344, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36846908

RESUMO

Since the discovery of an autonomous iron-sulfur cluster (Fe-S) assembly machinery in mitochondria, significant efforts to examine the nature of this process have been made. The assembly of Fe-S clusters occurs in two distinct steps with the initial synthesis of [2Fe-2S] clusters by a first machinery followed by a subsequent assembly into [4Fe-4S] clusters by a second machinery. Despite this knowledge, we still have only a rudimentary understanding of how Fe-S clusters are transferred and distributed among their respective apoproteins. In particular, demand created by continuous protein turnover and the sacrificial destruction of clusters for synthesis of biotin and lipoic acid reveal possible bottlenecks in the supply chain of Fe-S clusters. Taking available information from other species into consideration, this review explores the mitochondrial assembly machinery of Arabidopsis and provides current knowledge about the respective transfer steps to apoproteins. Furthermore, this review highlights biotin synthase and lipoyl synthase, which both utilize Fe-S clusters as a sulfur source. After extraction of sulfur atoms from these clusters, the remains of the clusters probably fall apart, releasing sulfide as a highly toxic by-product. Immediate refixation through local cysteine biosynthesis is therefore an essential salvage pathway and emphasizes the physiological need for cysteine biosynthesis in plant mitochondria.


Assuntos
Proteínas Ferro-Enxofre , Ferro , Ferro/metabolismo , Cisteína/metabolismo , Enxofre/metabolismo , Mitocôndrias/metabolismo , Apoproteínas/metabolismo , Proteínas Ferro-Enxofre/metabolismo
5.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430613

RESUMO

Plants are sessile organisms forced to adapt to environmental variations recurring in a day-night cycle. Extensive research has uncovered the transcriptional control of plants' inner clock and has revealed at least some part of the intricate and elaborate regulatory mechanisms that govern plant diel responses and provide adaptation to the ever-changing environment. Here, we analyzed the proteome of the Arabidopsis thaliana mutant genotypes collected in the middle of the day and the middle of the night, including four mutants in the phytochrome (phyA, phyB, phyC, and phyD) and the circadian clock protein LHY. Our approach provided a novel insight into the diel regulations, identifying 640 significant changes in the night-day protein abundance. The comparison with previous studies confirmed that a large portion of identified proteins was a known target of diurnal regulation. However, more than 300 were novel oscillations hidden under standard growth chamber conditions or not manifested in the wild type. Our results indicated a prominent role for ROS metabolism and phytohormone cytokinin in the observed regulations, and the consecutive analyses confirmed that. The cytokinin signaling significantly increased at night, and in the mutants, the hydrogen peroxide content was lower, and the night-day variation seemed to be lost in the phyD genotype. Furthermore, regulations in the lhy and phyB mutants were partially similar to those found in the catalase mutant cat2, indicating shared ROS-mediated signaling pathways. Our data also shed light on the role of the relatively poorly characterized Phytochrome D, pointing to its connection to glutathione metabolism and the regulation of glutathione S-transferases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/metabolismo , Proteoma/genética , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Glutationa/metabolismo , Apoproteínas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Nutrients ; 14(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36235710

RESUMO

A maternal low-protein (LP) diet during gestation and/or lactation results in metabolic syndrome in their offspring. Here, we investigated the effect of maternal LP diet during puberty and adulthood on the metabolic homeostasis of glucose and lipids in offspring. Female mice were fed with normal-protein (NP) diet or a LP diet for 11 weeks. Male offspring were then fed with a high-fat diet (NP-HFD and LP-HFD groups) or standard chow diet (NP-Chow and LP-Chow groups) for 4 months. Results showed that maternal LP diet during puberty and adulthood did not alter the insulin sensitivity and hepatic lipid homeostasis of their offspring under chow diet, but aggravated insulin resistance, hepatic steatosis, and hypercholesterolemia of offspring in response to a post-weaning HFD. Accordingly, transcriptomics study with offspring's liver indicated that several genes related to glucose and lipid metabolism, including lipoprotein lipase (Lpl), long-chain acyl-CoA synthetase 1 (Acsl1), Apoprotein A1 (Apoa1), major urinary protein 19 (Mup19), cholesterol 7α hydroxylase (Cyp7a1) and fibroblast growth factor 1 (Fgf1), were changed by maternal LP diet. Taken together, maternal LP diet during puberty and adulthood could disarrange the expression of metabolic genes in the liver of offspring and aggravate insulin resistance and hepatic steatosis in offspring fed a HFD.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Efeitos Tardios da Exposição Pré-Natal , Animais , Apoproteínas/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Coenzima A/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dieta com Restrição de Proteínas/efeitos adversos , Fígado Gorduroso/metabolismo , Feminino , Fator 1 de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Ligases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Maturidade Sexual
7.
Nature ; 609(7929): 1056-1062, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071163

RESUMO

Folates are essential nutrients with important roles as cofactors in one-carbon transfer reactions, being heavily utilized in the synthesis of nucleic acids and the metabolism of amino acids during cell division1,2. Mammals lack de novo folate synthesis pathways and thus rely on folate uptake from the extracellular milieu3. The human reduced folate carrier (hRFC, also known as SLC19A1) is the major importer of folates into the cell1,3, as well as chemotherapeutic agents such as methotrexate4-6. As an anion exchanger, RFC couples the import of folates and antifolates to anion export across the cell membrane and it is a major determinant in methotrexate (antifolate) sensitivity, as genetic variants and its depletion result in drug resistance4-8. Despite its importance, the molecular basis of substrate specificity by hRFC remains unclear. Here we present cryo-electron microscopy structures of hRFC in the apo state and captured in complex with methotrexate. Combined with molecular dynamics simulations and functional experiments, our study uncovers key determinants of hRFC transport selectivity among folates and antifolate drugs while shedding light on important features of anion recognition by hRFC.


Assuntos
Microscopia Crioeletrônica , Antagonistas do Ácido Fólico , Metotrexato , Proteína Carregadora de Folato Reduzido , Ânions/metabolismo , Apoproteínas/genética , Apoproteínas/metabolismo , Transporte Biológico , Carbono/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Humanos , Metotrexato/química , Metotrexato/metabolismo , Simulação de Dinâmica Molecular , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Proteína Carregadora de Folato Reduzido/ultraestrutura , Especificidade por Substrato
8.
Perspect Biol Med ; 65(3): 415-425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093774

RESUMO

The evolution of self-replicating biological species required the prebiotic evolution of fundamental chemical compounds that facilitate critical redox reactions, including chiefly the oxidation of water, the reduction of molecular oxygen, and redox transitions of partially reduced forms of oxygen (reactive oxygen species). The fundamental catalysts for these reactions are porphyrins. Chemically versatile, photoreactive, and redox-active, porphyrins (or their primary precursor, porphin) are believed to have evolved prebiotically in an enthalpically feasible series of reactions. Found throughout biological kingdoms, porphyrins were incorporated in apoproteins in biological evolution and adapted to the specific redox needs of the organisms in which they were active, including photosynthesis, reactive oxygen species metabolism, and oxidative phosphorylation. They did so by virtue of differing transition metal chelates and tetrapyrrole side chains. This article reviews the prebiotic and biotic evolution of porphyrins and porphyrin-bearing apoproteins and suggests that porphyrins' history in evolution reflects a repurposing of molecular motifs as an efficient mechanism for adaptation to a changing redox environment.


Assuntos
Porfirinas , Apoproteínas/metabolismo , Humanos , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Porfirinas/metabolismo , Espécies Reativas de Oxigênio
9.
J Biol Chem ; 298(10): 102472, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089066

RESUMO

The membrane-bound complex II family of proteins is composed of enzymes that catalyze succinate and fumarate interconversion coupled with reduction or oxidation of quinones within the membrane domain. The majority of complex II enzymes are protein heterotetramers with the different subunits harboring a variety of redox centers. These redox centers are used to transfer electrons between the site of succinate-fumarate oxidation/reduction and the membrane domain harboring the quinone. A covalently bound FAD cofactor is present in the flavoprotein subunit, and the covalent flavin linkage is absolutely required to enable the enzyme to oxidize succinate. Assembly of the covalent flavin linkage in eukaryotic cells and many bacteria requires additional protein assembly factors. Here, we provide mechanistic details for how the assembly factors work to enhance covalent flavinylation. Both prokaryotic SdhE and mammalian SDHAF2 enhance FAD binding to their respective apoprotein of complex II. These assembly factors also increase the affinity for dicarboxylates to the apoprotein-noncovalent FAD complex and stabilize the preassembly complex. These findings are corroborated by previous investigations of the roles of SdhE in enhancing covalent flavinylation in both bacterial succinate dehydrogenase and fumarate reductase flavoprotein subunits and of SDHAF2 in performing the same function for the human mitochondrial succinate dehydrogenase flavoprotein. In conclusion, we provide further insight into assembly factor involvement in building complex II flavoprotein subunit active site required for succinate oxidation.


Assuntos
Flavoproteínas , Succinato Desidrogenase , Humanos , Succinato Desidrogenase/metabolismo , Flavoproteínas/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , Ácido Succínico , Apoproteínas/metabolismo , Fumaratos
10.
Nature ; 609(7927): 611-615, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917925

RESUMO

Polar auxin transport is unique to plants and coordinates their growth and development1,2. The PIN-FORMED (PIN) auxin transporters exhibit highly asymmetrical localizations at the plasma membrane and drive polar auxin transport3,4; however, their structures and transport mechanisms remain largely unknown. Here, we report three inward-facing conformation structures of Arabidopsis thaliana PIN1: the apo state, bound to the natural auxin indole-3-acetic acid (IAA), and in complex with the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). The transmembrane domain of PIN1 shares a conserved NhaA fold5. In the substrate-bound structure, IAA is coordinated by both hydrophobic stacking and hydrogen bonding. NPA competes with IAA for the same site at the intracellular pocket, but with a much higher affinity. These findings inform our understanding of the substrate recognition and transport mechanisms of PINs and set up a framework for future research on directional auxin transport, one of the most crucial processes underlying plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas de Membrana Transportadoras , Apoproteínas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ftalimidas/metabolismo , Conformação Proteica , Especificidade por Substrato
11.
Nature ; 609(7927): 616-621, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917926

RESUMO

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestrutura , Transporte Biológico/efeitos dos fármacos , Microscopia Crioeletrônica , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ftalimidas/química , Ftalimidas/farmacologia , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
12.
IUBMB Life ; 74(7): 723-732, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35611886

RESUMO

This contribution focuses on the earliest steps of the assembly of FeS clusters and their insertion into acceptor apoproteins, that call for transient formation of a 2Fe2S cluster on a scaffold protein from sulfide and iron salts. For the sake of simplicity, this report is essentially limited to the Escherichia coli isc-encoded proteins and does not take into account agents that modulate the enzymatic synthesis of sulfide by protein in the same operon or the redox events associated with both sulfide generation and conversion of 2Fe2S structures in clusters of higher nuclearity. Therefore, the results discussed here are based on chemical reconstitution systems using inorganic sulfide, ferric salts, and excess thiols. This simplification offers the possibility to address some mechanistic issues related to the role of protein/protein interaction as for modulating: (a) the rate of cluster assembly on scaffold proteins; (b) the stability of the cluster on the scaffold protein; and (c) the rate of transfer to acceptor apoproteins as also influenced by the acceptor concentration. The emerging picture highlights the mechanistic versatility of the systems, that is discussed in terms of the capability of such an apparently simple combination of proteins to cope with various physiological situation. The hypothetical mechanism presented here may represent an additional way of modulating the rate and outcome of the overall process while avoiding potential toxicity issues.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Apoproteínas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Sais/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo
13.
Nature ; 606(7916): 1021-1026, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35580629

RESUMO

Chronic infection with hepatitis B virus (HBV) affects more than 290 million people worldwide, is a major cause of cirrhosis and hepatocellular carcinoma, and results in an estimated 820,000 deaths annually1,2. For HBV infection to be established, a molecular interaction is required between the large glycoproteins of the virus envelope (known as LHBs) and the host entry receptor sodium taurocholate co-transporting polypeptide (NTCP), a sodium-dependent bile acid transporter from the blood to hepatocytes3. However, the molecular basis for the virus-transporter interaction is poorly understood. Here we report the cryo-electron microscopy structures of human, bovine and rat NTCPs in the apo state, which reveal the presence of a tunnel across the membrane and a possible transport route for the substrate. Moreover, the cryo-electron microscopy structure of human NTCP in the presence of the myristoylated preS1 domain of LHBs, together with mutation and transport assays, suggest a binding mode in which preS1 and the substrate compete for the extracellular opening of the tunnel in NTCP. Our preS1 domain interaction analysis enables a mechanistic interpretation of naturally occurring HBV-insusceptible mutations in human NTCP. Together, our findings provide a structural framework for HBV recognition and a mechanistic understanding of sodium-dependent bile acid translocation by mammalian NTCPs.


Assuntos
Microscopia Crioeletrônica , Vírus da Hepatite B , Transportadores de Ânions Orgânicos Dependentes de Sódio , Receptores Virais , Simportadores , Animais , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Bovinos , Vírus da Hepatite B/metabolismo , Hepatócitos/metabolismo , Humanos , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/ultraestrutura , Ratos , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Receptores Virais/ultraestrutura , Sódio/metabolismo , Simportadores/química , Simportadores/genética , Simportadores/metabolismo , Simportadores/ultraestrutura
14.
Photochem Photobiol ; 98(5): 1068-1076, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34971002

RESUMO

Aequorin consists of apoprotein (apoAequorin) and (S)-2-peroxycoelenterazine (CTZ-OOH) and is considered to be a transient-state complex of an enzyme (apoAequorin) and a substrate (coelenterazine and molecular oxygen) in the enzymatic reaction. The degradation process of CTZ-OOH in aequorin was characterized under various conditions of protein denaturation. By acid treatment, the major product from CTZ-OOH was coelenteramine (CTM), but not coelenteramide (CTMD), and no significant luminescence was observed. The counterparts of CTM from CTZ-OOH were identified as 4-hydroxyphenylpyruvic acid (4HPPA) and 4-hydroxyphenylacetic acid (4HPAA) by liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (LC/ESI-TOF-MS). In the luminescence reaction of aequorin with Ca2+ , similar amounts of 4HPPA and 4HPAA were detected, indicating that CTM is formed by two pathways from CTZ-OOH through dioxetanone anion and not by hydrolysis from CTMD.


Assuntos
Equorina , Apoproteínas , Equorina/metabolismo , Apoproteínas/metabolismo , Benzenoacetamidas , Proteínas Luminescentes/metabolismo , Oxigênio , Pirazinas , Proteínas Recombinantes
15.
Metallomics ; 13(12)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34791391

RESUMO

Fe(II) exported from cells is oxidized to Fe(III), possibly by a multicopper ferroxidase (MCF) such as ceruloplasmin (CP), to efficiently bind with the plasma iron transport protein transferrin (TF). As unbound Fe(III) is highly insoluble and reactive, its release into the blood during the transfer from MCF to TF must be prevented. A likely mechanism for preventing the release of unbound Fe(III) is via direct interaction between MCF and TF; however, the occurrence of this phenomenon remains controversial. This study aimed to reveal the interaction between these proteins, possibly mediated by zinc. Using spectrophotometry, isothermal titration calorimetry, and surface plasmon resonance methods, we found that Zn(II)-bound CP bound to iron-free TF (apo-TF) with a Kd of 4.2 µM and a stoichiometry CP:TF of ∼2:1. Computational modeling of the complex between CP and apo-TF predicted that each of the three Zn(II) ions that bind to CP further binds to an acidic amino acid residue of apo-TF to play a role as a cross-linker connecting both proteins. Domain 4 of one CP molecule and domain 6 of the other CP molecule fit tightly into the clefts in the N- and C-lobes of apo-TF, respectively. Upon the binding of two Fe(III) ions to apo-TF, the resulting diferric TF [Fe(III)2TF] dissociated from CP by conformational changes in TF. In human blood plasma, zinc deficiency reduced the production of Fe(III)2TF and concomitantly increased the production of non-TF-bound iron. Our findings suggest that zinc may be involved in the transfer of iron between CP and TF.


Assuntos
Apoproteínas/metabolismo , Ceruloplasmina/metabolismo , Compostos Férricos/metabolismo , Transferrina/metabolismo , Zinco/metabolismo , Cátions , Ligação Proteica
16.
Biomolecules ; 11(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680068

RESUMO

Stearoyl-CoA desaturase-1 (SCD1 or delta-9 desaturase, D9D) is a key metabolic protein that modulates cellular inflammation and stress, but overactivity of SCD1 is associated with diseases, including cancer and metabolic syndrome. This transmembrane endoplasmic reticulum protein converts saturated fatty acids into monounsaturated fatty acids, primarily stearoyl-CoA into oleoyl-CoA, which are critical products for energy metabolism and membrane composition. The present computational molecular dynamics study characterizes the molecular dynamics of SCD1 with substrate, product, and as an apoprotein. The modeling of SCD1:fatty acid interactions suggests that: (1) SCD1:CoA moiety interactions open the substrate-binding tunnel, (2) SCD1 stabilizes a substrate conformation favorable for desaturation, and (3) SCD1:product interactions result in an opening of the tunnel, possibly allowing product exit into the surrounding membrane. Together, these results describe a highly dynamic series of SCD1 conformations resulting from the enzyme:cofactor:substrate interplay that inform drug-discovery efforts.


Assuntos
Simulação por Computador , Estearoil-CoA Dessaturase/metabolismo , Apoproteínas/metabolismo , Coenzima A/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Estearoil-CoA Dessaturase/química , Especificidade por Substrato , Termodinâmica
17.
Nat Commun ; 12(1): 5969, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645811

RESUMO

The Yersinia outer protein J (YopJ) family effectors are widely deployed through the type III secretion system by both plant and animal pathogens. As non-canonical acetyltransferases, the enzymatic activities of YopJ family effectors are allosterically activated by the eukaryote-specific ligand inositol hexaphosphate (InsP6). However, the underpinning molecular mechanism remains undefined. Here we present the crystal structure of apo-PopP2, a YopJ family member secreted by the plant pathogen Ralstonia solanacearum. Structural comparison of apo-PopP2 with the InsP6-bound PopP2 reveals a substantial conformational readjustment centered in the substrate-binding site. Combining biochemical and computational analyses, we further identify a mechanism by which the association of InsP6 with PopP2 induces an α-helix-to-ß-strand transition in the catalytic core, resulting in stabilization of the substrate recognition helix in the target protein binding site. Together, our study uncovers the molecular basis governing InsP6-mediated allosteric regulation of YopJ family acetyltransferases and further expands the paradigm of fold-switching proteins.


Assuntos
Acetiltransferases/química , Apoproteínas/química , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Ácido Fítico/química , Ralstonia solanacearum/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Regulação Alostérica , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ácido Fítico/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Ralstonia solanacearum/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , /microbiologia
18.
Protein Sci ; 30(9): 1804-1817, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34076319

RESUMO

With over 150 heritable mutations identified as disease-causative, superoxide dismutase 1 (SOD1) has been a main target of amyotrophic lateral sclerosis (ALS) research and therapeutic efforts. However, recent evidence has suggested that neither loss of function nor protein aggregation is responsible for promoting neurotoxicity. Furthermore, there is no clear pattern to the nature or the location of these mutations that could suggest a molecular mechanism behind SOD1-linked ALS. Here, we utilize reliable and accurate computational techniques to predict the perturbations of 10 such mutations to the free energy changes of SOD1 as it matures from apo monomer to metallated dimer. We find that the free energy perturbations caused by these mutations strongly depend on maturational progress, indicating the need for state-specific therapeutic targeting. We also find that many mutations exhibit similar patterns of perturbation to native and non-native maturation, indicating strong thermodynamic coupling between the dynamics at various sites of maturation within SOD1. These results suggest the presence of an allosteric network in SOD1 which is vulnerable to disruption by these mutations. Analysis of these perturbations may contribute to uncovering a unifying molecular mechanism which explains SOD1-linked ALS and help to guide future therapeutic efforts.


Assuntos
Apoproteínas/química , Superóxido Dismutase-1/química , Zinco/química , Regulação Alostérica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Cátions Bivalentes , Expressão Gênica , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Mutação , Agregados Proteicos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Termodinâmica , Zinco/metabolismo
19.
J Phys Chem Lett ; 12(24): 5723-5730, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34129341

RESUMO

The GroE molecular chaperone system is a critical protein machine that assists the folding of substrate proteins in its cavity. Water in the cavity is suspected to play a role in substrate protein folding, but the mechanism is currently unknown. Herein, we report measurements of water dynamics in the equatorial and apical domains of the GroEL cavity in the apo and football states, using site-specific tryptophanyl mutagenesis as an intrinsic optical probe with femtosecond resolution combined with molecular dynamics simulations. We observed clearly different water dynamics in the two domains with a slowdown of the cavity water from the apical to equatorial region in the football state. The results suggest that the GroEL cavity provides a unique water environment that may facilitate substrate protein folding.


Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Água/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cinética , Modelos Moleculares , Domínios Proteicos
20.
PLoS One ; 16(6): e0251743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34115795

RESUMO

The Ca2+-binding photoprotein aequorin is a complex of apoAequorin (apoprotein) and (S)-2-peroxycoelenterazine. Aequorin can be regenerated by the incubation of apoAequorin with coelenterazine and molecular oxygen (O2). In this study, to investigate the molecular recognition of apoAequorin for coelenterazine using chemical probes, the chiral deaza-analogs of (S)- and (R)-deaza-CTZ (daCTZ) for coelenterazine and of (S)-2- and (R)-2-hydroxymethyl-deaza-CTZ (HM-daCTZ) for 2-peroxycoelenterazine were efficiently prepared by the improvement method. The chiral deaza-analogs of (S)-daCTZ and (S)-HM-daCTZ selectively inhibited the regeneration step to aequorin by binding the catalytic site of coelenterazine in the apoAequorin molecule. The crystal structures of the apoAequorin complexes with (S)-daCTZ and (S)-HM-daCTZ were determined, suggesting that the hydroxy moiety at the C6-hydroxyphenyl group and the carbonyl moiety of the imidazopyrazinone ring in coelenterazine are essential to bind the apoAequorin molecule through hydrogen bonding. Therefore, the chiral deaza-analogs of coelenterazine can be used as a probe to study the interaction between coelenterazine and the related proteins including photoprotein, luciferase, and coelenterazine-binding protein.


Assuntos
Equorina/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cálcio/metabolismo , Equorina/química , Sítios de Ligação , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA